Unsupervised Domain Adaptation by Mapped Correlation Alignment

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation Alignment for Unsupervised Domain Adaptation

In this chapter, we present CORrelation ALignment (CORAL), a simple yet effective method for unsupervised domain adaptation. CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. In contrast to subspace manifold methods, it aligns the original feature distributions of the source and target domains, rather th...

متن کامل

Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation

In this work, we face the problem of unsupervised domain adaptation with a novel deep learning approach which leverages on our finding that entropy minimization is induced by the optimal alignment of second order statistics between source and target domains. We formally demonstrate this hypothesis and, aiming at achieving an optimal alignment in practical cases, we adopt a more principled strat...

متن کامل

Subspace Distribution Alignment for Unsupervised Domain Adaptation

We propose a novel method for unsupervised domain adaptation. Traditional machine learning algorithms often fail to generalize to new input distributions, causing reduced accuracy. Domain adaptation attempts to compensate for the performance degradation by transferring and adapting source knowledge to target domain. Existing unsupervised methods project domains into a lower-dimensional space an...

متن کامل

Just DIAL: DomaIn Alignment Layers for Unsupervised Domain Adaptation

The empirical fact that classifiers, trained on given data collections, perform poorly when tested on data acquired in different settings is theoretically explained in domain adaptation through a shift among distributions of the source and target domains. Alleviating the domain shift problem, especially in the challenging setting where no labeled data are available for the target domain, is par...

متن کامل

Correlation Alignment by Riemannian Metric for Domain Adaptation

Domain adaptation techniques address the problem of reducing the sensitivity of machine learning methods to the so-called domain shift, namely the difference between source (training) and target (test) data distributions. In particular, unsupervised domain adaptation assumes no labels are available in the target domain. To this end, aligning second order statistics (covariances) of target and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2018

ISSN: 2169-3536

DOI: 10.1109/access.2018.2865249